Derived Physical Quantities - Pt.II

 

Quantity

SI Unit

Dimension

Magnetic flux density

tesla (T = Wb/m2)

M T−2 I−1

Magnetization

A/m

L−1 I

Mass fraction

kg/kg

1

(Mass) Density (or volume density)

kg/m3

M L−3

Mean lifetime

s

T

Molar concentration

molm−3

L−3 N

Molar energy

J/mol

M L2 T−2 N−1

Molar entropy

J/(Kmol)

M L2 T−2 Θ−1 N−1

Molar heat capacity

J/(Kmol)

M L2 T−2 Θ−1 N−1

Moment of inertia

kgm2

M L2

Momentum

kgm/s

M L T1

Optical power

dioptre (dpt = m-1)

L−1

Permeability

H/m

M L T−2 I−2

Permittivity

F/m

M−1 L−3 T4 I2

Plane angle

radian (rad)

1

Power

watt (W)

M L2 T−3

Pressure

pascal (Pa = N/m2)

M L−1 T−2

Pop

m/s6

L T−6

(Radioactive) Activity

becquerel (Bq = Hz)

T−1

(Radioactive) Dose

gray (Gy = m2/s2)

L2 T−2

Radiance

W/(m2sr)

M T−3

Radiant intensity

W/sr

M L2 T−3

Reaction rate

mol/(m3s)

N L−3 T−1

Refractive index

unitless

1

Reluctance

H−1

M−1 L−2 T2 I2

Solid angle

steradian (sr)

1

Specific energy

Jkg−1

L2 T−2

Specific heat capacity

J/(Kkg)

L2 T−2 Θ−1

Specific volume

m3kg−1

M−1 L3

Spin

kgm2s−1

M L2 T−1

Strain

unitless

1

Stress

Pa

M L−1 T−2

Surface tension

N/m or J/m2

M T−2

Temperature gradient

K/m

Θ L−1

Thermal conductance

W/K

M L2 T−3 Θ−1

Thermal conductivity

W/(mK)

M L T−3 Θ−1

Thermal resistance

K/W

M−1 L−2 T3 Θ

Thermal resistivity

Km/W

M−1 L−1 T3 Θ

Torque

newton-metre (Nm)

M L2 T−2

Velocity

m/s

L T−1

Volume

m3

L3

Volumetric flow rate

m3s−1

L3 T−1

Wavelength

m

L

Wavenumber

m−1

L−1

Wavevector

m−1

L−1

Weight

newton (N = kgm/s2)

M L T−2

Work

joule (J)

M L2 T−2

Young's modulus

pascal (Pa = N/m2)

M L−1 T−2